
Aggregate Congestion Control for Peer-to-Peer File Sharing Applications*

* This work was supported by the National Natural Science Foundation of China under Grant No.60672086; the National 863 Program of China
under Grant No. 2006AA01Z229.

Wei LI1, Shanzhi CHEN1, 2, Yaning LIU1, Xin LI1
(1State Key Laboratory of Networking and Switching Technology, Beijing University of Posts

and Telecommunications; 2China Academy of Telecommunication Technology)
Python.Gozap@gmail.com

Abstract

Peer-to-Peer file sharing applications, which
enable peers to establish multiple TCP connections
between other peers to transfer data, pose new
challenge to congestion control. Since conventional
congestion control only aims to make each of those
connections TCP-friendly, self users can increase the
number of connections to grab a large share of the
bandwidth, introducing more congestion and
degrading the overall network performance. To
address this issue, in this paper we propose and design
an aggregate congestion control mechanism called
ACCM which enforces the friendliness of network upon
all the connections belongs to an application instead of
upon individual connection. By observing the share
congestion in access link through application-level
measurement technology, ACCM dynamically adjusts
the window size of parallel TCP connections,
achieving friendliness to the network on the basis of
maximize utilization of network bandwidth. The
simulation experiments demonstrate that certain
fairness and congestion avoidance can be achieved in
presence of congestion and the network bandwidth can
be effectively utilized in absence of congestion with
ACCM.

1. Introduction

In recent years, file applications based on Peer-to-
Peer (P2P) paradigm have become more and more
popular. The P2P approach differs from the traditional
client/server approach for building network
applications since the participating hosts play dual
roles as servers and clients. Thus, a peer generates
workload for the P2P application, while also providing
the capacity to process the workload generated by
other peers.

The novelty of the P2P paradigm relies on two main
concepts: cooperation among users and resource
sharing. The new concept according to which the users
of P2P systems provide services for the community has
several beneficial effects on the global system
performances: it permits to increase the service
capacity; it improves the network service reliability; it
makes the network more flexible and adaptive to the
users’ wishes.

Nevertheless, until recently P2P-based applications
(such as BitTorrent [1] and Kazaa [2]) have mainly
been developed for the sharing of audio and video
files. P2P-based file sharing applications are
characterizing a great fraction of the Internet traffic
nowadays and several statistics on IP traffic have
recently put in evidence that P2P traffic is starting to
dominate the bandwidth in certain segments of the
Internet. In particular, a recent study by CacheLogic
[3] shows that a high fraction of Internet traffic can be
contributed to about 60-70% of the traffic in Internet
and about 80% of the traffic in the last-mile networks.

P2P file sharing applications, which enable peers to
establish multiple connections between other peers to
transfer data, pose new challenge to congestion control.
Since conventional congestion control only aims to
make each of those connections TCP-friendly, self
users can increase the number of connections to grab a
large share of the bandwidth, introducing more
congestion and degrading the overall network
performance. It makes the ISPs’ networks, especially
the last-mile networks, become congested network
bottlenecks. The impacts of P2P file sharing
applications on network traffic patterns, capacity
planning, and infrastructure upgrades is significant.
P2P file sharing traffic causes network congestion and
deteriorates the performance of Internet traditional
applications, ultimately leading to ISPs customers

Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing

978-0-7695-3263-9/08 $25.00 © 2008 IEEE

DOI 10.1109/SNPD.2008.98

694

Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing

978-0-7695-3263-9/08 $25.00 © 2008 IEEE

DOI 10.1109/SNPD.2008.98

700

dissatisfy and churn.
To address this issue caused by aggressive P2P file

sharing applications, in this paper we propose ACCM
which is an aggregate congestion control mechanism
for P2P file sharing applications. The main goal of
ACCM is ensure that the P2P file sharing applications
does not negatively contribute to the share congestion
of the access link during overload periods. By
observing the share congestion in access link through
application-level measurement technology, ACCM
dynamically adjusts the window size of multiple
parallel TCP connections, achieving friendliness to the
network on the basis of maximize utilization of
network bandwidth. When the access link is idle,
ACCM increase the TCP connection window size,
improving the efficiency of data transfer and the
utilization of bandwidth; but when observing the share
congestion of access link, ACCM will decrease the
TCP connection window size, preventing those P2P
file sharing applications contribute too much to the
share congestion. Furthermore, ACCM requires neither
network node support nor transport layer modification,
which makes it easy to integrate into existing
applications.

The remainder of this paper is organized as follows:
Section 2 gives a short review of some prior works in
aggressive congestion control. Section 3 describes the
details of our ACCM mechanism. Experiments and
analysis are given in Section 4. The conclusion is
drawn in the last section.

2. Related work

Compared with congestion control in unicast,
aggregate congestion control for multiple flows is
relative new. The core idea of aggregate congestion
control is how to guarantee the fairness of a group of
flows.

Banchs [16] has recently proposed the notion of user
fairness, in which every sender is considered as a
single user in the network. This fairness scheme,
referred to as user fair queuing (UFQ), suggests that all
connections started by a user (sender) should be
considered as a single entity for rate allocation.

 UFQ approach needs ISPs deploy new equipment or
upgrade existing equipments. Although control in the
network side is very efficient, but it also will cost ISPs
huge. Therefore, many researchers have proposed
many user-side aggregate congestion control approach.

Congestion Manager (CM) [5] uses one AIMD
congestion window adjustment loop for the flow
aggregate to achieve a fair combined throughput. CP
[6] adopts equation-based rate adaptation [7] with

packets subsampling to achieve fair bandwidth share.
MPAT [8] keeps multiple bandwidth estimation loops
and allows the application to allocate bandwidth to
different flows while ensuring that the total throughput
is fair. Hacker et al. study parallel TCP flows [9] and
mimic TCP flows with longer RTT, so that flows in the
aggregate consume less bandwidth than a TCP flow,
making the aggregate TCP-friendly. 4CP [10] adjusts
its cwnd through balancing the loss probability along a
network path to some target of loss probability with
farsighted strategy. ImTCP-bg [11] uses an inline
network measurement technique [12] which uses
modified TCP protocol to measure the network
available bandwidth. Based on measured available
bandwidth, ImTCP-bg adjusts the rate of data packets
transfer.

Compared to the network-side algorithms such as
URQ [16], the above algorithms are all implemented in
the user side, will not cost ISPs even a penny. The
fundamental flaw is that they all adopted cross-layer
design idea, need modify TCP protocol. Although
experiment results show the effectiveness of those
approach, but it is difficult to deployment. Therefore, a
new congestion control method is therefore required

2. Aggregate congestion control

mechanism

As illustrated in Figure 1, our ACCM mechanism
consisting of the following two core algorithms: one is
access link congestion inferring algorithm and the
other is connection window control algorithm. Access
link congestion inferring algorithm is based on
application-layer measurement technology. We send
probe packet to the paths belong to the connections of
P2P file sharing application and measure the RTT and
packet loss rate to detect the status of access link.
Connection window control algorithm is similar to
TCP window control; the difference is that we are
control the TCP connection in the application layer.
When congestion occurred in the access link, not only
the underlying TCP transfer window will backoff, but
also in the application layer the TCP connection
window will decrease with AIAD strategy. Thus, P2P
file sharing application could ensure the fairness of
other single-connection applications such as FTP.

695701

Fig.1. Framework of ACCM
Below, we will sense the access link congestion

inferring algorithms and connection window control
algorithm described in detail.

3.1 Access link congestion inferring

In most P2P file sharing application, transfer files
are often split into fixed-size fragments (such as 256K
in BitTorrent [1] or Gutella [2]), and all the fragments
are distributed in different peers. When one peer
named P want to retrieve a file, it will establish
multiple TCP connections between many other
different peers to transfer data as shown in Figure 2.
These TCP connections all have the same source node
(P) but the different destination node. When
Congestion occurred in the network, if these
connections belong to peer P all have shared
Congestion link, then the link must be the access link
of peer P, because they are connected to the same
source node but the destination node is different , the
only one link they shared is the access link of the
source node. Similarly, if these connections belong to
peer P are all have not shared congestion link, then the
access link of the source node P must be in idle state.
Therefore, from above analysis we know how to detect
whether those link has difference destination node are
all share congested link is the core idea of our access
link congestion inferring algorithm.

Fig.2. Parallel download of P2P file sharing

application

Sharing congestion detection [12, 13, 14, 15] now is

a hot research topic. The basic technique is based on
the observation that measured delays of two paths
show strong correlation if the paths share one or more
congested links and little correlation if they do not
share any congested links. Min Ski Kim proposed a
new shared congestion detection approach named
wavelet-based technique. Compared with other
techniques, it provides faster convergence and higher
accuracy while using fewer packets. Furthermore, the
denoising process effectively removes noise and makes
it more resilient to synchronization offset, which
confuses other techniques. For details of this
technique, please refer to the original paper [15].

Our access link congestion inferring algorithm is
based on the Wavelet-based Share Congestion
Detection technique proposed in [15]. Next, we will
describe the algorithm in detail and give the pseudo-
code in Table.1.

We use XCOR(X, Y) to denote the cross-correlation
coeffient of one-way delay sequence of path X and Y.
When XCOR(X, Y) returns 1, the two path share a
congested link; when it returns 0, no shared congested
link is detected. Suppose node P has established N
connections with other peers for data transfer, and
those connections has M difference destination. Our
algorithm consists of two stages: sampling and
processing. In the sampling stage, node P will first
randomly select M connections that has difference
destination from all N connections, and sends to every
destination node a sequence of UDP packets (the
number is K) with a timestamp, starting at time T0 with
its own clock. Each such UDP packet is called a probe
packet. Probe packets are sent at a constant rate until
T0+T, where T is the probe interval. On receiving a
probe packet, every destination node calculates one-
way delay and sends it, with the original timestamp,
back to the source node P. Then node P records the
one-way delay together with the timestamp as a delay
sample. The sampling stage ends when the last delay
sample from destination node is received (or upon
timeout if the last probe or the reply is lost), and at the
end node P will records the probe packet lost rate of
each connections. In the processing stage, if on
connection suffers probe packet loss, which means the
access link is idle, and we do not need to do anything.
When some connection such as connection j has
suffered probe packet loss, we will compute the cross-
correlation coefficients of connection j and all other
connection and the aggregate result. If the aggregate
result is equal to 0, it means the access link of node P
is idle. If the aggregate result is equal to M, it means
the access link of node P is congested. If other

696702

scenarios, we think the access link of node P is in
relative steady state, may be congestion was occurred
in other link but not in the access link of node P.

Table.1. Pseudo-code of Access link
congestion inferring algorithm

1. select M connections that has difference
destination from all N connections into C;

2.
3. /* sampling stage */
4. for (i = 1; i ++; i =< M) {
5. send probe packet for C(i);
6. measure RTT and packet loss rate of C(i);
7. }
8.
9. /* processing stage */
10. flag = 0;
11. if (isPacketLoss(C(j)) {

12. / * means flag =
0

(,)
M

i

XCOR i j
=
∑ */

13. for (i = 1; i++; i =< M) {
14. flag += XCOR(i, j);
15. }
16.
17. if (flag == M)
18. the access link of Peer P is congested;
19. else if (flag == 0)
20. the access link of Peer P is idle;
21. else
22. the access link of Peer P is stable;
23. }

3.2 Connection windows control

Each P2P file sharing application controls all of its

data transfer connections with a single instance of
ACCM. ACCM maintains a window of outstanding
TCP connections: it will only issue a new data transfer
connection when the network in the idle state. The
pseudo-code is given in Table.2.

Table.2. Pseudo-code of Connection window

control algorithm
1. switch (the congestion status) {
2. idle:
3. W = W + ⊿;
4. congested:
5. W = W - ⊿;
6. stable:
7. W = W;
8. }

ACCM maintains a current connection window size
W in a manner similar to that of TCP window control.

In our algorithm, we use AIAD strategy to dynamically
adjust the connection window size. We set the initial
window size as W0 and the maximum as WM. When
ACCM show the access link is idle, it increases W by
⊿, improving the efficiency of data transfer and the
utilization of bandwidth, but When the access link is
congested, ACCM will decrease W by ⊿, preventing
those P2P file sharing applications contribute too much
to the share congestion and keeping fairness to other
applications. In other scenarios, network is in a stable
state, the window size W will remain unchanged.

4. Performance evaluation

In this section we will evaluate the performance of
our aggregate congestion control mechanism for P2P
file sharing applications. In our experiment, we choose
BitTorrent [1] which is the most famous P2P file
sharing application in Internet, and will implement
ACCM in XBT [17] (an open source implementation of
BitTorrent protocol, written in C++). We will do
following performance evaluation in the experiment:
fairness between BitTorrent and FTP, network
bandwidth utilization and algorithm overhead.

4.1 Experiment setup

The topology and configuration of the testbed is
illustrated in Figure 3. We have a testbed with 12 PCs
interconnected by some Cisco routers and we create an
experiment network with three sub networks. In order
to run our experiment with a relatively large number of
peers, we configure two IP addresses in each PC and
bind each peer with a particular IP address, then we
will have 24 peers. The uplink bandwidth of each peer
is 500Kbps and downlink bandwidth is 1Mbps.

Fig.3. the topology of the testbed

We have implemented ACCM mechanism in XBT
[17], and the paramtre setting of ACCM is shown in.
We deploy the BitTorrent tracker server on Peer9 and

697703

the seed on Peer10 in sub network 2, and deploy one
ftp server on Peer20 in sub network 3. The standand
BitTorrent client and modified BitTorrent client are all
deployed on each other peers, and the ftp client only
deployed on Peer1.

We prepared two file all having a size more than
500 MB for BitTorrent downloading and FTP
downloading (The size of file to be delivered is big
enough, so one of our experiments can be sustained for
a longer period of time) and we will measure the
throughput of FTP application and BitTorrent
application and access link bandwidth utilization in
Peer1.

Table 3: ACCM PARAMETERS

The number of probe packets (K) 10
Probe interval (T) 1 (s)
Initial window size (W0) 1
Max window size (WM) 32

4.1 Fairness between BitTorrent and FTP

Figure 4 shows the aggregated throughput
comparison result of FTP application and standard
BitTorrent application. Before the time 200s, there is
only FTP traffic in the network, and the throughput of
FTP application are all very stable. When we start
standard BitTorrent application in the network, it is
aggressive to grab most of bottleneck bandwidth from
FTP application. And as shown in Figure 4, the
throughput of FTP application decreased over time.

Fig.4. The aggregated throughput of FTP and

Standard BitTorrent
Figure 5 shows the aggregated throughput

comparison result of FTP application and BitTorrent
application with ACCM. After we started the modified
BitTorrent application (with ACCM), the throughput of
FTP application has decreased, but still very stable. Its
means ACCM could efficiently enable BitTorrent
application keep fairness with FTP application.

Fig.5. The aggregated throughput of FTP and
BitTorrent with ACCM

4.2 Network utilization

We compare the network utilization between

standard BitTorrent and BitTorrent with ACCM and
the result is show in Figure 6. Before the time of 200s,
there is only BitTorrent traffic in the network. Then we
inject same number of FTP flows into the network. At
the beginning of the experiment, the network
utilization under Standard BitTorrent increase faster
than under BitTorrent with ACCM, because ACCM
enable BitTorrent use AIAD strategy to increase its
connection window to alleviate the impact on Internet
network and traditional Internet traffic. The
comparative result from 30s to 200s shows BitTorrent
with our ACCM mechanism also can achieve high
network utilization as standard BitTorrent. Network
utilization changes more drastically in scenarios of
BitTorrent with ACCM, which shows the ACCM
mechanism worked as soon as the access link was
congested.

Fig.6. The access link utilization under

Standard BitTorrent and BitTorrent with ACCM

4.3 Algorithm overhead

698704

In our prototype system, the access link congestion
inferring algorithm will lead to some additional
overhead which is the fundamental flaw in our system.
This overhead directly proportional to our algorithm
parameters K and T, and the two parameters will
directly affect the accuracy of the algorithm. In our
experiments, K is set to 10 and T is set to 1s, and the
overhead is 0.8 KB/s. From the experiment results
show at 4.2 and 4.3, we believe that the additional
overhead caused by access link congestion inferring
algorithm is in the acceptable range and will not
degrade the performance of file downloading.

5. Conclusion and future work

In this paper we propose and design an aggregate
congestion control mechanism called ACCM which
enforces the friendliness of network upon all the
connections belongs to P2P file sharing application
instead of upon individual connection. ACCM adopts
application-level measurement technology to infer
network congestion situation, and on the basis uses
AIMD algorithm to control parallel data transfer
connections, achieving friendliness to the network and
maximize utilization of network bandwidth.
Furthermore, compared to other existing algorithms,
ACCM needs neither the support of network nor the
modification of protocol stack, so it can be easily
implemented and deployed. The simulation
experiments demonstrate that the certain fairness and
congestion avoidance can be achieved in presence of
congestion and the network bandwidth can be
effectively utilized in absence of congestion with
ACCM.

Our future work will focus on finding more accurate
and cost less access link congestion inferring
algorithms and evaluating the performance of other
connection window control strategies such as MIAD,
MIAD and MIMD.

6. References

[1] http://bitconjurer.org/BitTorrent/. December 2007
[2] http://www.kazaa.com/. December 2007
[3] CacheLogic Research. “The true pictures of P2P file

sharing”. 2004.
http://cachelogic.com/research/slide1.php

[4] A. Banchs, “User Fair Queuing: Fair Allocation of
Bandwidth for Users,” in Proceedings of IEEE Infocom,
2002.

[5] H. Balakrishnan, H. Rahul, and S. Seshan, “An
Integrated Congestion Management Architecture for
Internet Hosts,” in Proceedings of ACM SIGCOMM,
Cambridge, MA, September 1999.

[6] D. E. Ott, T. Sparks, and K. Mayer-Patel, “Aggregate
Congestion Control for Distributed Multimedia

Applications,” in Proceedings of IEEE INFOCOM,
Hong Kong, China, March 2004.

[7] S. Floyd, M. Handley, J. Padhye, and J. Widmer,
“Equation-Based Congestion Control for Unicast
Applications,” in Proceedings ACM SIGCOMM,
Stockholm, Sweden, August 2000.

[8] M. Singh, P. Pradhan, and P. Francis, “MPAT:
Aggregate TCP Congestion Management as a Building
Block for Internet QoS,” in Proceedings of IEEE
International Conference on Network Protocols
(ICNP’04), Berlin, Germeny, October 2004.

[9] T. J. Hacker, B. D. Noble, and B. D. Athey, “Improving
Throughput and Maintaining Fairness Using Parallel
TCP,” in Proceedings of IEEE INFOCOM, Hong Kong,
China, March 2004.

[10] Shao Liu, Milan Vojnovi´c, Dinan Gunawardena. “4CP:
Competitive and Considerate Congestion Control
Protocol.” In Proceedings of ACM SIGCOMM, 2006.

[11] T. Tsugawa, G. Hasegawa, and M. Murata,
“Background TCP data transfer with inline network
measurement,” in Proceedings of APCC, Oct. 2005.

[12] D. Rubenstein, J. Kurose, and D. Towsley, “Detecting
shared congestion of flows via end-to-end
measurement,” in Proceedings of ACM SIGMETRICS,
San Jose, CA, June 2000.

[13] D. Katabi, I. Bazzi, and X. Yang, “A passive approach
for detecting shared bottlenecks,” in Proceedings IEEE
Conf. on Comp. Comm. and Networks, Arizona, Oct.
2001.

[14] W. Cui, S. Machiraju, R. Katz, and I. Stoica, “SCONE:
A tool to estimate shared congestion among internet
paths,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/CSD-04-1320, 2004.

[15] M. Kim, S. Lam, T. Kim, Y. Shin, and E. J. Powers, “A
wavelet-based Approach to Detect Shared Congestion,”
in Proceedings of ACM SIGCOMM 2004, Portland,
Oregon, August 2004.

[16] V. Jacobson and M. J. Karels, “Congestion avoidance
and control,” in Proceedings of ACM SIGCOMM,
1988.

[17] http://xbtt.sourceforge.net/

699705

