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Abstract 
 

Peer-to-Peer file sharing applications, which 
enable peers to establish multiple TCP connections 
between other peers to transfer data, pose new 
challenge to congestion control. Since conventional 
congestion control only aims to make each of those 
connections TCP-friendly, self users can increase the 
number of connections to grab a large share of the 
bandwidth, introducing more congestion and 
degrading the overall network performance. To 
address this issue, in this paper we propose and design 
an aggregate congestion control mechanism called 
ACCM which enforces the friendliness of network upon 
all the connections belongs to an application instead of 
upon individual connection. By observing the share 
congestion in access link through application-level 
measurement technology, ACCM dynamically adjusts 
the window size of parallel TCP connections, 
achieving friendliness to the network on the basis of 
maximize utilization of network bandwidth. The 
simulation experiments demonstrate that certain 
fairness and congestion avoidance can be achieved in 
presence of congestion and the network bandwidth can 
be effectively utilized in absence of congestion with 
ACCM.  
 
1. Introduction 
 

In recent years, file applications based on Peer-to-
Peer (P2P) paradigm have become more and more 
popular. The P2P approach differs from the traditional 
client/server approach for building network 
applications since the participating hosts play dual 
roles as servers and clients. Thus, a peer generates 
workload for the P2P application, while also providing 
the capacity to process the workload generated by 
other peers.  

The novelty of the P2P paradigm relies on two main 
concepts: cooperation among users and resource 
sharing. The new concept according to which the users 
of P2P systems provide services for the community has 
several beneficial effects on the global system 
performances: it permits to increase the service 
capacity; it improves the network service reliability; it 
makes the network more flexible and adaptive to the 
users’ wishes.  

Nevertheless, until recently P2P-based applications 
(such as BitTorrent [1] and Kazaa [2]) have mainly 
been developed for the sharing of audio and video 
files. P2P-based file sharing applications are 
characterizing a great fraction of the Internet traffic 
nowadays and several statistics on IP traffic have 
recently put in evidence that P2P traffic is starting to 
dominate the bandwidth in certain segments of the 
Internet. In particular, a recent study by CacheLogic 
[3] shows that a high fraction of Internet traffic can be 
contributed to about 60-70% of the traffic in Internet 
and about 80% of the traffic in the last-mile networks. 

P2P file sharing applications, which enable peers to 
establish multiple connections between other peers to 
transfer data, pose new challenge to congestion control. 
Since conventional congestion control only aims to 
make each of those connections TCP-friendly, self 
users can increase the number of connections to grab a 
large share of the bandwidth, introducing more 
congestion and degrading the overall network 
performance. It makes the ISPs’ networks, especially 
the last-mile networks, become congested network 
bottlenecks. The impacts of P2P file sharing 
applications on network traffic patterns, capacity 
planning, and infrastructure upgrades is significant. 
P2P file sharing traffic causes network congestion and 
deteriorates the performance of Internet traditional 
applications, ultimately leading to ISPs customers 
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dissatisfy and churn. 
To address this issue caused by aggressive P2P file 

sharing applications, in this paper we propose ACCM 
which is an aggregate congestion control mechanism 
for P2P file sharing applications. The main goal of 
ACCM is ensure that the P2P file sharing applications 
does not negatively contribute to the share congestion 
of the access link during overload periods. By 
observing the share congestion in access link through 
application-level measurement technology, ACCM 
dynamically adjusts the window size of multiple 
parallel TCP connections, achieving friendliness to the 
network on the basis of maximize utilization of 
network bandwidth. When the access link is idle, 
ACCM increase the TCP connection window size, 
improving the efficiency of data transfer and the 
utilization of bandwidth; but when observing the share 
congestion of access link, ACCM will decrease the 
TCP connection window size, preventing those P2P 
file sharing applications contribute too much to the 
share congestion. Furthermore, ACCM requires neither 
network node support nor transport layer modification, 
which makes it easy to integrate into existing 
applications. 

The remainder of this paper is organized as follows: 
Section 2 gives a short review of some prior works in 
aggressive congestion control. Section 3 describes the 
details of our ACCM mechanism. Experiments and 
analysis are given in Section 4. The conclusion is 
drawn in the last section. 
 
2. Related work 
 

Compared with congestion control in unicast, 
aggregate congestion control for multiple flows is 
relative new. The core idea of aggregate congestion 
control is how to guarantee the fairness of a group of 
flows.  

Banchs [16] has recently proposed the notion of user 
fairness, in which every sender is considered as a 
single user in the network. This fairness scheme, 
referred to as user fair queuing (UFQ), suggests that all 
connections started by a user (sender) should be 
considered as a single entity for rate allocation. 

 UFQ approach needs ISPs deploy new equipment or 
upgrade existing equipments. Although control in the 
network side is very efficient, but it also will cost ISPs 
huge. Therefore, many researchers have proposed 
many user-side aggregate congestion control approach. 

Congestion Manager (CM) [5] uses one AIMD 
congestion window adjustment loop for the flow 
aggregate to achieve a fair combined throughput. CP 
[6] adopts equation-based rate adaptation [7] with 

packets subsampling to achieve fair bandwidth share. 
MPAT [8] keeps multiple bandwidth estimation loops 
and allows the application to allocate bandwidth to 
different flows while ensuring that the total throughput 
is fair. Hacker et al. study parallel TCP flows [9] and 
mimic TCP flows with longer RTT, so that flows in the 
aggregate consume less bandwidth than a TCP flow, 
making the aggregate TCP-friendly. 4CP [10] adjusts 
its cwnd through balancing the loss probability along a 
network path to some target of loss probability with 
farsighted strategy. ImTCP-bg [11] uses an inline 
network measurement technique [12] which uses 
modified TCP protocol to measure the network 
available bandwidth. Based on measured available 
bandwidth, ImTCP-bg adjusts the rate of data packets 
transfer. 

Compared to the network-side algorithms such as 
URQ [16], the above algorithms are all implemented in 
the user side, will not cost ISPs even a penny. The 
fundamental flaw is that they all adopted cross-layer 
design idea, need modify TCP protocol. Although 
experiment results show the effectiveness of those 
approach, but it is difficult to deployment. Therefore, a 
new congestion control method is therefore required 
 
2. Aggregate congestion control 

mechanism 
 

As illustrated in Figure 1, our ACCM mechanism 
consisting of the following two core algorithms: one is 
access link congestion inferring algorithm and the 
other is connection window control algorithm. Access 
link congestion inferring algorithm is based on 
application-layer measurement technology. We send 
probe packet to the paths belong to the connections of 
P2P file sharing application and measure the RTT and 
packet loss rate to detect the status of access link. 
Connection window control algorithm is similar to 
TCP window control; the difference is that we are 
control the TCP connection in the application layer. 
When congestion occurred in the access link, not only 
the underlying TCP transfer window will backoff, but 
also in the application layer the TCP connection 
window will decrease with AIAD strategy. Thus, P2P 
file sharing application could ensure the fairness of 
other single-connection applications such as FTP.   
 

695701



 
 

Fig.1. Framework of ACCM 
Below, we will sense the access link congestion 

inferring algorithms and connection window control 
algorithm described in detail. 
 
3.1 Access link congestion inferring 
 

In most P2P file sharing application, transfer files 
are often split into fixed-size fragments (such as 256K 
in BitTorrent [1] or Gutella [2]), and all the fragments 
are distributed in different peers. When one peer 
named P want to retrieve a file, it will establish 
multiple TCP connections between many other 
different peers to transfer data as shown in Figure 2. 
These TCP connections all have the same source node 
(P) but the different destination node. When 
Congestion occurred in the network, if these 
connections belong to peer P all have shared 
Congestion link, then the link must be the access link 
of peer P, because they are connected to the same 
source node but the destination node is different , the 
only one link they shared is the access link of the 
source node. Similarly, if these connections belong to 
peer P are all have not shared congestion link, then the 
access link of the source node P must be in idle state. 
Therefore, from above analysis we know how to detect 
whether those link has difference destination node are 
all share congested link is the core idea of our access 
link congestion inferring algorithm. 

 
Fig.2. Parallel download of P2P file sharing 

application 
 

Sharing congestion detection [12, 13, 14, 15] now is 

a hot research topic. The basic technique is based on 
the observation that measured delays of two paths 
show strong correlation if the paths share one or more 
congested links and little correlation if they do not 
share any congested links. Min Ski Kim proposed a 
new shared congestion detection approach named 
wavelet-based technique. Compared with other 
techniques, it provides faster convergence and higher 
accuracy while using fewer packets. Furthermore, the 
denoising process effectively removes noise and makes 
it more resilient to synchronization offset, which 
confuses other techniques. For details of this 
technique, please refer to the original paper [15]. 

Our access link congestion inferring algorithm is 
based on the Wavelet-based Share Congestion 
Detection technique proposed in [15]. Next, we will 
describe the algorithm in detail and give the pseudo-
code in Table.1. 

We use XCOR(X, Y) to denote the cross-correlation 
coeffient of one-way delay sequence of path X and Y. 
When XCOR(X, Y) returns 1, the two path share a 
congested link; when it returns 0, no shared congested 
link is detected. Suppose node P has established N 
connections with other peers for data transfer, and 
those connections has M difference destination. Our 
algorithm consists of two stages: sampling and 
processing. In the sampling stage, node P will first 
randomly select M connections that has difference 
destination from all N connections, and sends to every 
destination node a sequence of UDP packets (the 
number is K) with a timestamp, starting at time T0 with 
its own clock. Each such UDP packet is called a probe 
packet. Probe packets are sent at a constant rate until 
T0+T, where T is the probe interval. On receiving a 
probe packet, every destination node calculates one-
way delay and sends it, with the original timestamp, 
back to the source node P. Then node P records the 
one-way delay together with the timestamp as a delay 
sample. The sampling stage ends when the last delay 
sample from destination node is received (or upon 
timeout if the last probe or the reply is lost), and at the 
end node P will records the probe packet lost rate of 
each connections. In the processing stage, if on 
connection suffers probe packet loss, which means the 
access link is idle, and we do not need to do anything. 
When some connection such as connection j has 
suffered probe packet loss, we will compute the cross-
correlation coefficients of connection j and all other 
connection and the aggregate result. If the aggregate 
result is equal to 0, it means the access link of node P 
is idle. If the aggregate result is equal to M, it means 
the access link of node P is congested. If other 
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scenarios, we think the access link of node P is in 
relative steady state, may be congestion was occurred 
in other link but not in the access link of node P. 

Table.1. Pseudo-code of Access link 
congestion inferring algorithm 

1. select M connections that has difference 
destination from all N connections into C; 

2.  
3. /* sampling stage */ 
4. for (i = 1; i ++; i =< M) { 
5.     send probe packet for C(i); 
6.     measure RTT and packet loss rate of C(i); 
7. } 
8.  
9. /* processing stage */ 
10. flag = 0; 
11. if (isPacketLoss(C(j)) { 

12.     / * means flag =
0

( , )
M

i

XCOR i j
=
∑  */ 

13.     for (i = 1; i++; i =< M) { 
14.         flag += XCOR(i, j);  
15. }  
16.  
17. if (flag == M) 
18.     the access link of Peer P is congested; 
19. else if (flag == 0) 
20.     the access link of Peer P is idle; 
21. else 
22.     the access link of Peer P is stable; 
23. }  
 
3.2 Connection windows control 

 
Each P2P file sharing application controls all of its 

data transfer connections with a single instance of 
ACCM. ACCM maintains a window of outstanding 
TCP connections: it will only issue a new data transfer 
connection when the network in the idle state. The 
pseudo-code is given in Table.2. 

 
Table.2. Pseudo-code of Connection window 

control algorithm 
1. switch (the congestion status) { 
2.     idle: 
3.        W = W + ⊿; 
4.     congested: 
5.         W = W - ⊿; 
6.     stable: 
7.         W = W; 
8. } 

ACCM maintains a current connection window size 
W in a manner similar to that of TCP window control. 

In our algorithm, we use AIAD strategy to dynamically 
adjust the connection window size. We set the initial 
window size as W0 and the maximum as WM. When 
ACCM show the access link is idle, it increases W by 
⊿, improving the efficiency of data transfer and the 
utilization of bandwidth, but When the access link is 
congested, ACCM will decrease W by ⊿, preventing 
those P2P file sharing applications contribute too much 
to the share congestion and keeping fairness to other 
applications. In other scenarios, network is in a stable 
state, the window size W will remain unchanged.  

 
4. Performance evaluation 
 

In this section we will evaluate the performance of 
our aggregate congestion control mechanism for P2P 
file sharing applications. In our experiment, we choose 
BitTorrent [1] which is the most famous P2P file 
sharing application in Internet, and will implement 
ACCM in XBT [17] (an open source implementation of 
BitTorrent protocol, written in C++). We will do 
following performance evaluation in the experiment: 
fairness between BitTorrent and FTP, network 
bandwidth utilization and algorithm overhead. 
 
4.1 Experiment setup 
 

The topology and configuration of the testbed is 
illustrated in Figure 3. We have a testbed with 12 PCs 
interconnected by some Cisco routers and we create an 
experiment network with three sub networks. In order 
to run our experiment with a relatively large number of 
peers, we configure two IP addresses in each PC and 
bind each peer with a particular IP address, then we 
will have 24 peers. The uplink bandwidth of each  peer 
is 500Kbps and downlink bandwidth is 1Mbps.  

 

 
Fig.3. the topology of the testbed 

We have implemented ACCM mechanism in XBT 
[17], and the paramtre setting of ACCM is shown in. 
We deploy the BitTorrent tracker server on Peer9 and 
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the seed on Peer10 in sub network 2, and deploy one 
ftp server on Peer20 in sub network 3. The standand 
BitTorrent client and modified BitTorrent client are all 
deployed on each other peers, and the ftp client only 
deployed on Peer1.  

We prepared two file all having a size more than 
500 MB for BitTorrent downloading and FTP 
downloading (The size of file to be delivered is big 
enough, so one of our experiments can be sustained for 
a longer period of time) and we will measure the 
throughput of FTP application and BitTorrent 
application and access link bandwidth utilization in 
Peer1. 

Table 3:  ACCM PARAMETERS 
 

The number of probe packets (K) 10 
Probe interval (T) 1 (s) 
Initial window size (W0) 1 
Max window size (WM) 32 

 
4.1 Fairness between BitTorrent and FTP 
 

Figure 4 shows the aggregated throughput 
comparison result of FTP application and standard 
BitTorrent application. Before the time 200s, there is 
only FTP traffic in the network, and the throughput of 
FTP application are all very stable. When we start 
standard BitTorrent application in the network, it is 
aggressive to grab most of bottleneck bandwidth from 
FTP application. And as shown in Figure 4, the 
throughput of FTP application decreased over time. 

 
Fig.4. The aggregated throughput of FTP and 

Standard BitTorrent 
Figure 5 shows the aggregated throughput 

comparison result of FTP application and BitTorrent 
application with ACCM. After we started the modified 
BitTorrent application (with ACCM), the throughput of 
FTP application has decreased, but still very stable. Its 
means ACCM could efficiently enable BitTorrent 
application keep fairness with FTP application. 

 

Fig.5. The aggregated throughput of FTP and 
BitTorrent with ACCM 

 
4.2 Network utilization 

 
We compare the network utilization between 

standard BitTorrent and BitTorrent with ACCM and 
the result is show in Figure 6. Before the time of 200s, 
there is only BitTorrent traffic in the network. Then we 
inject same number of FTP flows into the network. At 
the beginning of the experiment, the network 
utilization under Standard BitTorrent increase faster 
than under BitTorrent with ACCM, because ACCM 
enable BitTorrent use AIAD strategy to increase its 
connection window to alleviate the impact on Internet 
network and traditional Internet traffic. The 
comparative result from 30s to 200s shows BitTorrent 
with our ACCM mechanism also can achieve high 
network utilization as standard BitTorrent. Network 
utilization changes more drastically in scenarios of 
BitTorrent with ACCM, which shows the ACCM 
mechanism worked as soon as the access link was 
congested. 

 
Fig.6. The access link utilization under 

Standard BitTorrent and BitTorrent with ACCM 
 

4.3 Algorithm overhead 
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In our prototype system, the access link congestion 
inferring algorithm will lead to some additional 
overhead which is the fundamental flaw in our system. 
This overhead directly proportional to our algorithm 
parameters K and T, and the two parameters will 
directly affect the accuracy of the algorithm. In our 
experiments, K is set to 10 and T is set to 1s, and the 
overhead is 0.8 KB/s. From the experiment results 
show at 4.2 and 4.3, we believe that the additional 
overhead caused by access link congestion inferring 
algorithm is in the acceptable range and will not 
degrade the performance of file downloading. 
 
5. Conclusion and future work 
 

In this paper we propose and design an aggregate 
congestion control mechanism called ACCM which 
enforces the friendliness of network upon all the 
connections belongs to P2P file sharing application 
instead of upon individual connection. ACCM adopts 
application-level measurement technology to infer 
network congestion situation, and on the basis uses 
AIMD algorithm to control parallel data transfer 
connections, achieving friendliness to the network and 
maximize utilization of network bandwidth. 
Furthermore, compared to other existing algorithms, 
ACCM needs neither the support of network nor the 
modification of protocol stack, so it can be easily 
implemented and deployed. The simulation 
experiments demonstrate that the certain fairness and 
congestion avoidance can be achieved in presence of 
congestion and the network bandwidth can be 
effectively utilized in absence of congestion with 
ACCM. 

Our future work will focus on finding more accurate 
and cost less access link congestion inferring 
algorithms and evaluating the performance of other 
connection window control strategies such as MIAD, 
MIAD and MIMD. 
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