
Friendly P2P: Application-level Congestion Control
for Peer-to-Peer Applications

Yaning Liu1,2, Hongbo Wang1, Yu Lin1, Shiduan Cheng1

1State Key Lab. of Networking and Switching Tech.
Beijing Univ. of Posts and Telecommunications, China

Gwendal Simon2

2Computer Science Department
Institut TELECOM - TELECOM Bretagne, France

Abstract—Peer-to-Peer (P2P) file sharing applications use mul-
tiple TCP connections between peers to transfer data. The
aggressiveness and robustness of P2P technology remarkably
improve transfer efficiency and network bandwidth utilization.
However, while the network bottleneck link is congested, P2P
applications tend to unfairly steal bandwidth from other tra-
ditional Internet applications (Client/Server mode), which de-
teriorates the performance of traditional Internet applications.
The paper proposes a friendlyP2P system with new application-
level approaches for congestion detection and avoidance to keep
fairness between P2P traffic and traditional Internet traffic.
friendlyP2P, which is friendly to ISPs, namely to Internet net-
works and traditional Internet traffic, detects network congestion
via throughput measurements and alleviates network congestion
by optimization of the number of P2P connections from the
viewpoint of P2P users. friendlyP2P system requires neither
network node support nor TCP modification, which makes it easy
to deploy. Simulation experiments demonstrate that fairness and
congestion avoidance can be achieved in presence of congestion,
and network bandwidth can be effectively utilized in absence of
congestion with friendlyP2P technology.

Index Terms—Peer-to-Peer, Friendly, Congestion Detection and
Avoidance, Network Measurement.

I. INTRODUCTION

Applications relying on peer-to-peer (P2P) architectures
have become massively popular: file-sharing or phone sys-
tem [1] are the most famous. This trend is scheduled to
continue because numerous projects based on P2P data ex-
changes are currently under development, for example video
streaming [2] or Distributed Hash Tables (DHT) [3]. However
the growth of P2P traffic, which has already been noticed in the
past [4], raises new issues for Internet Service Provider (ISP).
Among them, the number of simultaneous TCP connections
handled by P2P applications is threatening other traditional
Internet applications. Indeed cooperation between peers is
commonly implemented with multiple concurrent TCP con-
nections in file-sharing applications as well as in most recent
video streaming systems. As a consequence, the ratio of TCP
connections for applications such as HTTP or VoIP over the
total number of TCP connections is smaller, so the part of the
bandwidth these latter applications could use becomes weaker.
In other words, the fair bandwidth sharing mechanism of TCP
fails in guarantying a fair sharing among applications.

This work is supported by China National Natural Science Founda-
tion(90604019, 60502037); China National 863 Program(2006AA01Z235);
China National Grand Fundamental Research 973 Program(2006CB701306);
New Century Excellent Talents in University (NCET-07-0109).

host

host

host

access router

router

Internet

P2P

ftp
w

eb

VoIP

bottleneck link

Fig. 1. Access point congestion: three hosts sharing an access point, dotted
lines represent P2P connections and plain lines are for traditional applications

This observation could be neglected if the network bot-
tleneck was far from the end users. Several studies have
unfortunately shown that most network bottlenecks in the
Internet are either in the access network or on the links be-
tween ISPs [5]. When congestion occurs on the shared access
network which connects a xDSL router or a FTTH access
router to the Internet, P2P applications with multiple TCP
connections unfairly steal bandwidth from other traditional
Internet applications. Moreover, the need for ubiquitous or
pervasive Internet makes the number of devices connected to
one access point, and consequently the number of applications
served by this first router, increases dramatically. This concern
advocates for an application-level fair sharing of bandwidth.
This scenario is illustrated in Figure 1 where three hosts
connected to Internet through an unique access point are
running four applications using eight connections.

A. Limitations of Existing Techniques

In order to address the issue related with aggressive P2P
applications, ISPs have defined a set of policies aiming at
controlling P2P traffic within their backbone network. A
first challenge consists in identifying this traffic [6], then to
design a way to contravene it. Some technologies have been
implemented [7], but they act on the backbone although the
congestion occurs in the access network. Therefore they can
probably not prevent congestion and, worst, they probably cut
off some P2P connections for clients experiencing idle network

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 1

Authorized licensed use limited to: TELECOM Bretagne. Downloaded on July 30, 2009 at 10:25 from IEEE Xplore. Restrictions apply.

usage. It results that ISPs implementing such technologies may
alleviate and even lose subscribers without actually improving
the performance of their network.

Another approach requires the contribution of Internet
routers. Integrated services (IntServ) based on RSVP protocol
can be used to prioritize some flows, while differentiated
services (DiffServ) defines a set of class of services which
allows a traffic management based upon broad flow aggregates.
Unfortunately these mechanisms require the cooperation of
all routers. In a more recent work, flow-aware networking
(FAN) [8] provides per-flow differentiation to active flows
through implicit admission control and per-flow scheduling.
FAN requires the association of the end user and its access
router to solve the problem of the access network congestion,
but the replacement and update of current access routers are
costly. We would focus on mechanisms based on only end
users without the support of any router.

In another approach motivated by distributed applications,
“lower than best effort” mechanisms are especially useful
for background transfer applications, so which may tolerate
occasional throughput degradation, e.g. content prefetching
and storage management in P2P systems. The idea is to
infer network congestion in advance and back off earlier
than loss-based TCP Reno. TCP Nice [9], TCP-LP [10] and
4CP [11] make the background transfer more sensitive to
network congestion. Though they do not need any support
from router, they require to modify the TCP protocol, which
we can hardly assume. An application-level approach [12] has
also been proposed to infer the available capacity and to adjust
the sending rate of the background transfer by varying the
receiver-advertised window size. This latter work is close to
what we would like to do, but friendlyP2P realizes a real-time
management of throughput which is actually far more variable
than the usual one because the capacity of peers is very
heterogeneous. Furthermore, P2P applications are designed
so that a faulty connection is efficiently handled with self-
stabilizing algorithms. On the contrary, experiencing a variable
quality on a link can trouble most P2P algorithms where peers
tend to aggregate based on their capacity.

B. Our contributions

We present in this paper friendlyP2P: an application-level
congestion detection and avoidance which does not require
neither router support, nor any TCP modifications. This sys-
tem, intended to run on end users’ devices, contains two
components aiming at: (i) measuring the throughput of P2P
flows to infer real-time status of the access network and (ii)
relieving network congestion by adjusting the number of P2P
connections accordingly. This second component may be im-
plemented with regard to P2P applications, that is friendlyP2P
could provide some network status and recommendations to
other applications in order to let them adjust the number of
connections by themselves. In this paper, we consider for
simplicity that friendlyP2P can directly modify the number
of flows associated with a P2P application.

The behavior of friendlyP2P is quite basic. As soon as
the network is idle, friendlyP2P increases the number of P2P
connections so that transfer efficiency and network utilization
can be improved. Indeed, network bandwidth can be utilized at
full steam in this case, so P2P applications can freely increase
the number of connections. On the contrary, friendlyP2P
changes the P2P traffic from aggressiveness to friendliness as
soon as a network congestion is detected. The number of P2P
flows is then reduced, so other applications may retrieve more
bandwidth. This behavior is expected to alleviate network
congestion, improve satisfaction of users and reduce the cost
of network maintenance and capacity extension.

The paper gives a short description of this preliminary
work. A simple model is presented in Section II. We then
propose the friendlyP2P system in Section III. The focus
of the description in this paper is restricted to fundamental
ideas behind this system, especially algorithms for congestion
control and congestion avoidance. Many more sophisticated
approaches could be designed but we aim here to present basic
but efficient algorithms because we emphasize the concept
of friendlyP2P rather than its actual implementing details.
Simulations demonstrate the validity of the friendlyP2P system
in Section IV. Our goal is again to show that friendlyP2P can
basically have a positive impact on access point network and
to give an overview of the kind of results we may expect from
preliminary works in this direction. Finally, future works and
conclusive thoughts are given in Section V.

II. MODEL AND NOTATIONS

The model described in the following concerns P2P appli-
cations using TCP protocol, i.e. P2P applications are assumed
to be bulk transfer TCP flows. The packet loss rate pi of
one connection i is an indication of network congestion in
TCP Reno and contributes also to the variability of TCP
performance, especially the throughput noted TH(p). The
average Round Trip Time of the ith TCP flow, denoted as
RTTi, equals to the sum of Twait(i) – the average waiting
time in the queue of the bottleneck router – with τ(i) the
propagation time determinated by the speed of light. The Max-
imum Size Segment MSSi depends on the underlying network
and operating system. We assume that MSSi is identical and
constant across all simultaneous TCP connections.

TH(pi) =
MSS

RTTi ∗ f(pi)
=

MSS

(τi + Twait(i)) × f(pi)

The aggregated bandwidth of a P2P application using k
simultaneous connections is BW . Following a well-known
model for the steady state throughput of a bulk transfer TCP
flow [13] and assuming that pi and Twait(i) are equal for all
P2P connections in the congested access network, we obtain:

BW ≤
MSS

f(p)

(
k∑

i=1

1

τi + Twait

)

TCP congestion avoidance algorithm is an equilibrium pro-
cess that attempts to balance all TCP flows to fairly share
network bottleneck bandwidth. As the number of P2P flows

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 2

Authorized licensed use limited to: TELECOM Bretagne. Downloaded on July 30, 2009 at 10:25 from IEEE Xplore. Restrictions apply.

increases, the cross-traffic – web, VoIP and other Internet
single-flow application – back off more to P2P traffic in the
congested network bottleneck, which greatly improves the
aggregated throughput of P2P traffic. A performance model of
integrating P2P file sharing traffic and web traffic is proposed
to quantify the impact of P2P traffic on web traffic in [14].

The friendlyP2P system takes place on a computer running
simultaneously m P2P tasks generating n TCP connections.
The number of connections managed by the ith task is noted
ni which we consider as being variable between MinNum
and MaxNum, respectively the minimum and the maximum
connection number of a P2P application. The throughput of
the jth connection of the ith application is noted THij . The
network inferring mechanism is based on perpetual analysis
of these connections. For simplicity, the notation we use for
the last throughput measure and the congestion signal for
this connection is noted preTHij and Congij respectively.
CongF lag is the congestion signal as a whole sight depending
upon all the P2P connections. Finally, γ and µ(γ ≤ 1, µ ≤ 1)
denote the additive increase and decrease factor respectively.

III. FRIENDLY P2P SYSTEM

With the friendlyP2P system, we seek to balance two
conflicting goals: fairness and high network utilization. We
assume that all applications are based upon the TCP Reno
protocol which is the most popular TCP version presently.
Congestion detection is based upon following ideas: in the
absence of network congestion, TCP Reno increases its win-
dow by one, and then friendlyP2P will infer that many P2P
flows are increasing their throughput and deem network idle. If
TCP Reno detects network congestion, it halves its congestion
window, so congested TCP flows halve their throughput. In
this case, friendlyP2P will infer bottleneck router congested
when many P2P flows halve their rates. We implement the
congestion control algorithm of friendlyP2P on the download
links where the impact of P2P traffic on the traditional
Client/Server service is more severe. The study on upload link
will be considered in the future work.

A. Congestion Detection Mechanism

The congestion detection mechanism has two compo-
nents: throughput measurement and congestion detection. The
throughput measurement from the viewpoint of the host is
the precondition of the congestion detection algorithm. During
data transferring, P2P applications commonly use chunks
which are all the same size except for possibly the last one
which may be truncated. We assume a P2P host keeps one or
more P2P connections with each peer to get all the chunks
that the peer has. Based upon chunk transfer, we calculate the
throughput of each P2P connection, THij which is equal to
the chunk size divided by a chunk transfer time. The algorithm
for each P2P connection is stated in Algorithm 1. Algorithm
sensitiveness may be adjusted through two control parameters
α and β (α ≥ 1, 0 ≤ β ≤ 1). The more α is decreasing or
β is increasing, the more sensitive is the algorithm to infer
change of network status. Especially as α = 1 or β = 1,

friendlyP2P infers the network idle or congested as soon as
current throughput measured is larger or less than previous
one respectively.

Algorithm 1: Congestion detection for one P2P connection

if (THij > α × preTHij) then
preTHij = THij ;
Congij = 0;

else if (THij < β × preTHij) then
preTHij = THij ;
Congij = 1;

else
Congij = −1;

end

Algorithm 2 shows the algorithm for all P2P connec-
tions. If more than half P2P connections are increasing their
throughput, which means an idle network, friendlyP2P sets
congF lag = 0. If more than half P2P connections are de-
creasing their throughput, which means a congested network,
friendlyP2P sets congF lag = 1. In other scenarios friend-
lyP2P infers the network steady and sets congF lag = −1.

B. Congestion Avoidance Mechanism

If congF lag is null, friendlyP2P supposes the network is
idle and increases the number of P2P connections. Rather,
a congF lag set to 1 means that access network should be
congested, so friendlyP2P triggers the congestion avoidance
algorithm. In other scenarios, the concurrent number of P2P
connections is kept unchanged.

The initial number of P2P connections is noted n0. In
case of idle network, friendlyP2P increases the number of
connections by the factor γ for each task until inferring a
stable (or congested) network or reaching MaxNum. When
network is congested, friendlyP2P decreases the number of
connections by the factor µ for each task until inferring a
stable (or idle) network or reaching MinNum. As γ and µ
increasing, the network status will change acutely. We set the
default value of MinNum to 1 to guarantee at least one TCP
stream’s fair portion of network bandwidth. The congestion
avoidance algorithm is described in Algorithm 3.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of friendlyP2P
system in several scenarios. Our objective is to explore the
behavior of download links in the bottleneck link - the
access network. We define generalP2P as a basic P2P file
sharing application, where a peer gets from many peers some
chunks. On the contrary, friendlyP2P is the same application
augmented with the application-level congestion control. We
compared the impact of friendlyP2P traffic with generalP2P
traffic on the Internet traditional traffic, including FTP, UDP
and HTTP cross-traffic.

We use NS-2.24 and the topology in Figure 2. Gnutel-
laSim [15] is a scalable packet-level Gnutella simulator. By
modifying the application layer and the protocol layer, we

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 3

Authorized licensed use limited to: TELECOM Bretagne. Downloaded on July 30, 2009 at 10:25 from IEEE Xplore. Restrictions apply.

Algorithm 2: Congestion detection for all P2P connections

if (1

2

m∑
i=1

ni > (the number where Congij = 1)) then

congF lag = 0;

else if (1

2

m∑
i=1

ni > (the number where Congij = 0))

then
congF lag = 1;

else
congF lag = −1;

end

Algorithm 3: Congestion avoidance algorithm
for i=1 to M-1 do ni = n0;
for i=1 to M-1 do

if (congF lag = 0 && ni < MaxNum) then
ni = ni + γ;

else if (congF lag = 1 && ni > MinNum) then
ni = ni − µ;

else
ni unchanged;

end
end

test

host access
router router

server

p0...p9

p10...p19

p20...p29

L
1Mbps

Fig. 2. The simulation topology

extend GnutellaSim to support congestion control of friend-
lyP2P. We run friendlyP2P on peers and the P2P end user
host that is the measurement point in the access network.
Cross traffic are generated from peers to test. The bottleneck
link L is the export of the last-mile access network with drop-
tail FIFO queuing and is set to 1Mbps. Other links are set
to 100Mbps to make the link L be the only bottleneck. The
buffer size is set to the bandwidth delay product. Packets are
set to 512 bytes in size and the propagation delays are set to
a random value in interval (10ms, 100ms).

We focus on the performance of one end user, thereafter
called host, in a congested access network. The number of
simulated peers does not require to be high, because our
concern is to build as many P2P connections as possible to
congest the bottleneck. The peers are denoted P0, P1, ..., P29.
After running the experiment several times and comparing the
experiment result, we basically set α = 2, β = 1/2, γ =
1, µ = 1 in Alg. 1 and Alg. 3. We will evaluate the exact
tuning of these parameters in future works.

A. Competing with FTP traffic

We first consider that P2P traffic coexists with FTP traffic.
Five P2P tasks are run between host and its peers and five
FTP tasks between test and server respectively. Each P2P
task has four TCP connections and FTP task has one TCP
connection. So 20 P2P flows are run between host and peers
and 5 FTP flows are run between test and server.

Figure 3 and Figure 4 compare temporal dynamics of
the aggregated throughput of FTP traffic with generalP2P
traffic and friendlyP2P traffic respectively. Figure 3 shows
that generalP2P traffic is aggressive in taking most of the
bottleneck bandwidth. Through dynamically inferring network
status, friendlyP2P can be modest and keep the fairness
between P2P traffic and FTP traffic in Figure 4.

B. Competing with UDP traffic

The interaction of friendlyP2P traffic with an UDP flow is
investigated in this section. The rate of the UDP flow increases
from 200Kbps to 800Kbps when the time is 3000 second.
Figure 5 and Figure 6 show the throughput of generalP2P
traffic and friendlyP2P traffic respectively.

Aggregated throughput of friendlyP2P in Figure 6 fluctuates
more drastically than generalP2P in Figure 5, because conges-
tion control algorithms make throughput of friendlyP2P traffic
fluctuate according to current network status. When bottleneck
network is congested, friendlyP2P back off, which makes UDP
traffic change more smoothly in Figure 6. Especially when
UDP traffic violently increases from 200Kbps to 800Kbps,
UDP traffic changes more drastically in Figure 5. Experiment
results show that generalP2P is more aggressive than friend-
lyP2P while coexisting with UDP traffic.

C. Competing with WEB traffic

We also explore the impact of the number of P2P con-
nections on web latency which means duration of getting a
Web page. For performance idealization and simplicity, web
latency is investigated in a scenario where only one web-
traffic flow exists. Web traffic is run from server to test.
With the same direction as web traffic, P2P traffic is from
(p0, ..., p29) to host. MaxNum of friendlyP2P equals the
number of generalP2P in Figure 7.

When the number of P2P connections are not big enough
to make the network congested, web latency in friendlyP2P
scenarios almost equals that of generalP2P scenarios. As the
number of P2P connections increases, network congestion
occurs. friendlyP2P adjusts the number of P2P connections
to alleviate network congestion. With congestion control of
friendlyP2P, a significant improvement in the performance of
the web traffic is obtained in presence of network congestion.

D. Network utilization

We compare network utilization between generalP2P and
friendlyP2P in Figure 8. Before the time of 170s, there is
only P2P traffic in the network. Then we inject Web and FTP
traffic into the network. At the beginning of the experiment,
the aggregated throughput of generalP2P increases faster

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 4

Authorized licensed use limited to: TELECOM Bretagne. Downloaded on July 30, 2009 at 10:25 from IEEE Xplore. Restrictions apply.

 0

 200

 400

 600

 800

 1000

 1200

 0 1000 2000 3000 4000 5000 6000

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Time (s)

FTP throughput
General P2P throughput

Fig. 3. Comparing the aggregated throughput
between generalP2P traffic and FTP traffic

 0

 200

 400

 600

 800

 1000

 1200

 0 1000 2000 3000 4000 5000 6000

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Time (s)

FTP throughput
Friendly P2P throughput

Fig. 4. Comparing the aggregated throughput
between friendlyP2P traffic and FTP traffic

 0

 200

 400

 600

 800

 1000

 1200

 0 1000 2000 3000 4000 5000 6000

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Time (s)

UDP throughput
General P2P throughput

Fig. 5. Comparing the aggregated throughput
between generalP2P traffic and UDP traffic

 0

 200

 400

 600

 800

 1000

 1200

 0 1000 2000 3000 4000 5000 6000

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Time (s)

UDP throughput
Friendly P2P throughput

Fig. 6. Comparing the aggregated throughput
between friendlyP2P traffic and UDP traffic

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

W
e

b
 l
a

te
n

c
y
 (

s
)

The maximum number of P2P connections

General P2P
Friendly P2P

Fig. 7. Web latency versus the number of P2P
connections

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000 1200 1400

A
g

g
re

g
a

te
d

 t
h

ro
u

g
h

p
u

t
(K

b
p

s
)

Time (s)

General P2P + cross traffic
Friendly P2P + cross traffic

Fig. 8. Comparing the throughput for two
kinds of P2P traffic

than friendlyP2P, because friendlyP2P additively increases the
number of connections to alleviate the impact on the Internet
network and traditional Internet traffic. The dotted curve after
50s shows friendlyP2P can keep the same high network uti-
lization as generalP2P. After 170s, the aggregated throughput
changes more drastically in the friendlyP2P scenarios, which
shows that congestion control algorithms of friendlyP2P can
work well as the access network is congested and can also
keep high average network utilization.

V. CONCLUSION

This paper presents friendlyP2P: a congestion control al-
gorithm designed to alleviate the impact of P2P traffic on
traditional Internet traffic. This proposal aims to allow P2P
applications to benefit from an intensive network utilization
in the absence of network congestion, but to also switch
to a more friendly mode as soon as a network congestion
occurs. This preliminary proposal is appropriate for any P2P
system where each peer gets some fixed-size chunks from
many peers through many TCP connections. One strong point
behind friendlyP2P is that it requires neither support of routers
nor any TCP modification, so it can be easily deployed in
the Internet. The NS2 simulations validate the effectiveness
of friendlyP2P. Compared to a basic P2P application, friend-
lyP2P can improve the performance of traditional Internet
traffic when network congestion occurs. We believe mutual
benefit among ISPs, P2P users and non-P2P users can be
achieved through the friendlyP2P solution. Future works will
extend this paper, especially more complex congestion detec-
tion mechanisms will be defined and all parameters which may
impact the system behavior will be precisely evaluated.

REFERENCES

[1] S. A. Baset and H. Schulzrinne, “An analysis of the skype peer-to-peer
internet telephony protocol,” in IEEE Infocom, 2006.

[2] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, “A measurement study
of a large-scale p2p iptv system,” Multimedia, IEEE Transactions on,
vol. 9, no. 8, pp. 1672–1687, Dec. 2007.

[3] S. Rhea, B. Godfrey, B. Karp, and J. Kubiatowicz, “Opendht: a public
dht service and its uses,” SIGCOMM Comput. Commun. Rev., vol. 35,
no. 4, pp. 73–84, 2005.

[4] C. Research, “The true pictures of p2p file sharing,” 2004. [Online].
Available: http://cachelogic.com/research/slide1.php

[5] A. Akella, S. Seshan, and A. Shaikh, “An empirical evaluation of wide-
area internet bottlenecks,” in ACM Conf. on Internet Measurement, 2003.

[6] F. Constantinou and P. Mavrommatis, “Identifying known and unknown
peer-to-peer traffic,” in IEEE Int. Symposium on Network Computing
and Applications, 2006, p. 93–102.

[7] [Online]. Available: http://www.p-cube.com/index.shtml
[8] S. Oueslati and J. Roberts, “A new direction for quality of service: flow-

aware networking,” Next Generation Internet Networks, April 2005.
[9] A. Venkataramani, R. Kokku, and M. Dahlin, “Tcp nice: A mechanism

for background transfers,” in Operating Systems Design and Implemen-
tation (OSDI’02), 2002.

[10] A. Kuzmanovic and E. W. Knightly, “Tcp-lp: low-priority service via
end-point congestion control,” IEEE/ACM Trans. Netw., 2006.

[11] S. Liu, M. Vojnovic, and D. Gunawardena, “4cp: Competitive and
considerate congestion control protocol,” in ACM SIGCOMM, 2006.

[12] P. Key, L. Massoulie, and B. Wang, “Emulating low-priority transport
at the application layer: A background transfer service,” in ACM
SIGMETRICS/Performance’04, June 2004.

[13] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling tcp reno
performance: a simple model and its empirical validation,” IEEE/ACM
Trans. Netw., vol. 8, no. 2, pp. 133–145, 2000.

[14] Y. Liu, H. Wang, Y. Lin, and S. Cheng, “Modeling and quantifying
the impact of p2p traffic on traditional internet traffic,” in 22nd Int.
Conf. on Advanced Information Networking and Applications Workshop
(AINAW’08), 2008.

[15] He, Q. Ammar, M. R. G. Raj, and H. Fujimoto, “Mapping peer behavior
to packet-level details: a framework for packet-level simulation of
peer-to-peer systems,” in 11th IEEE/ACM International Symposium on
MASCOTS 2003, 2003.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 5

Authorized licensed use limited to: TELECOM Bretagne. Downloaded on July 30, 2009 at 10:25 from IEEE Xplore. Restrictions apply.

